Non-contact 3D Measuring System
Hyper Quick Vision WLI Series

Catalog No. E14001
Coordinate Measurement and Non-contact 3D Measurement in a Single System
Advanced High Precision Dual Head Measuring System equipped with White Light Interferometer (WLI) Optical Head

Non-contact 2D/3D measurement with high precision and high resolution

White light interferometer (WLI optical head) applied to vision measuring systems enables a wide range of powerful measurements, from 2D measurement of coordinates and dimensions, surface analysis in microscopic areas, depth measurement of small-diameter holes, and to high-precision 3D measurement of wiring dimensions on a printed circuit board.

A white light is split into two beams, one for the reference mirror within the interference objective lens and the other for the measurement sample. When the interference objective lens is swept in the Z-direction, white interference fringes are generated only in the area of the measurement sample that is focused.

The three dimensional shape of the object being measured is calculated by detecting the peak position of the interference fringe intensity at each pixel position of the CCD camera.

Capable of handling a wide variety of measurement surfaces

WLI method can handle a wide variety of measurement surfaces including diffusing surfaces and mirrored surfaces. Using Mitutoyo’s proprietary algorithm, WLI can also handle surfaces with large brightness differences, e.g., where plastic and metal coexist in mixed states.

Principle of WLI measurement

A white light is split into two beams, one for the reference mirror within the interference objective lens and the other for the measurement sample. When the interference objective lens is swept in the Z-direction, white interference fringes are generated only in the area of the measurement sample that is focused.

The three dimensional shape of the object being measured is calculated by detecting the peak position of the interference fringe intensity at each pixel position of the CCD camera.
Top Performance Presented by Continuously Evolving Vision Measuring Function and Advanced WLI Optical Head

**High-efficiency measurement achieved by a single machine performing two roles**

Coordinate dimension measurement has inherited all of the proven vision measuring functions of Quick Vision. Switches to 3D measurements without setup changes following vision measurement. Seamlessly continuous measurement is made possible by Quick Vision’s automatic control.

![Vision measurements of coordinates, pitch, diameter, width, angle, etc.](image)

![3D measurements of surface analysis, cross-sectional dimensions, steps, contour matching, etc.](image)

**Easy targeting of measurement position**

Offset amount of vision optical head and WLI optical head is calibrated with high accuracy. Switching to high-magnification WLI optical head after positioning with vision optical head of low magnification and a wide field of view does not lose sight of the targeted area, thus guaranteeing a highly efficient measurement.

![Offset amount of vision optical head and WLI optical head](image)

**Advanced-design platform culminating from Mitutoyo’s high accuracy technology**

Main frame structure boasting a large stage and high accuracy is achieved by structure having a fixed bridge and a translation stage providing mutually independent X-axis and Y-axis movements, which are advantageous for achieving high accuracy. For added stability of measurement, a pneumatic auto-leveling vibration isolator is provided as a standard structure. Unique design principle of Quick Vision series guarantees superb vibration isolation performance. Achieves high precision measurement for a wide range of applications, from long dimensions of large workpieces to minute dimensions.

![Main frame structure](image)
Lineup

Hyper Quick Vision WLI404

Hyper Quick Vision WLI606
Software
Powerfully supporting high functionality and measurement efficiency

QVPAK2000

A function for acquiring interference fringes is added to QVPAK Software having high functionality and universal application capabilities for vision measuring systems. The measurement procedure program prepared by QVPAK2000 automatically controls the coordinates and dimensions in vision measurement, 3D data synthesis in WLI measurement, data output, and shape/evaluation analysis software (optional) thus providing a highly efficient measurement system.

Examples of computational capabilities

Versatile vision measurement

Circular tool
Line tool
Multi point AF
AI illumination tool
(auto compensation of light)

Line tool

Point         Line          Circle       Plane         Sphere Cylinder     Cone        Buffer          Angle      Distance Midpoint  Middle line

Stepped cylinder

Point of intersection
Line of intersection
Midpoint
Middle line

Auto trace tool

Various filters

Geometric deviation drawing
QV3DPAK

Synthesizes three dimensional shape data from interference fringes to display shapes or outputs point cloud data to external sources. Point cloud data can be used for generating surfaces, as well as for outputting height, ID and OD dimensions. Also, 3D data can be transferred to the shape/evaluation analysis software (optional) to implement shape measurement and surface analysis.

Applications

Enables you to switch from inaccurate visual inspections to accurate measurements based on automatic computation.

- Diameter measurement by extracting a horizontal cross-section
- Analysis of contour shape from ZX (YZ) cross-section extraction
  Use of FORMPAK-QV (optional)
- Surface analysis based on 3D data
  Use of FORMTRACAPEAK-PRO (optional)
### Optional Software

**Shape evaluation and analysis software FORMPAK-QV**

Performs design value cross-referencing and shape analysis based on shape data obtained using QV’s Auto Trace Tool and WLI optical head.

**Contour cross-referencing function**
- Preparation of statistical data
  - CAD data conversion, master work conversion, function designation, text file conversion, aspheric design value preparation
- Design value referencing
  - Normal direction referencing, axial direction referencing, best fit referencing
- Result display
  - Result listing, error line chart, error development diagram, error coordinate value display function, analysis result display

**Microscopic shape analysis**
- **Analysis items:** point measurement, line measurement, circle measurement, distance measurement, cross point measurement, angle measurement, origin measurement, axial rotation
- **Computational items:** maximum value, minimum value, mean value, standard deviation, area

**Report preparation function**
- Measurement report, error line chart, error development diagram

**Other functions**
- Recording/execution of analysis procedure
- External output function
  - CSV-format output, ASC output
- Trend compensation, filter process
- Quadratic curve fitting function
- Quasi-roughness analysis function

### Shape evaluation and analysis software FORMTRACEPAK-PRO

Software for conducting analysis process based on point cloud data obtained via WLI optical head. If a two-dimensional analysis does not provide sufficient and reliable results, the software provides a three-dimensional evaluation and analysis method.

**Major functions**

**Three-dimensional display**
- Capable of wireframing, shading, contouring, setting up of color setting free for contour fill, and illumination setting, and allows the user to freely rotate, enlarge, shrink, or move the analysis target.

**Trend compensation, filter process**
- Capable of trend compensation using planes, spheres, cylindrical surfaces, and polyhedrons. Filter process can be chosen from one-dimensional digital filter and two-dimensional digital filter for each profile.

**Rich functions for digitization and graphical display of surface shapes**
- Capable of evaluation of wear and oil sump using relative load curves and area distribution curves.
- Spectral analysis, analysis of cross-sectional areas and volumes, calculation of tilt angles of peaks and valleys, and histogram calculation of number of peaks and valleys.

**Rich feature-extraction functions based on measurement data**
- Capable of slope intensification, simultaneous analysis of peaks and valleys of cross section, and extraction of arbitrary cross-sections.

**Other optional software for Quick Vision is also available.**

For details, please refer to the catalog for the Quick Vision series.
Hardware Options

Objective lens

QV objective lens

<table>
<thead>
<tr>
<th>Objective Lens</th>
<th>Code No.</th>
<th>PPT Magnification</th>
<th>Monitor Magnification</th>
<th>Field of View (mm)</th>
<th>Operating Distance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QV-SL0.5×</td>
<td>02AKT199</td>
<td>1×</td>
<td>14×</td>
<td>12.54×9.4</td>
<td>30.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2×</td>
<td>28×</td>
<td>6.27×4.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6×</td>
<td>83×</td>
<td>2.09×1.56</td>
<td></td>
</tr>
<tr>
<td>QV-HR1× QV-SL1×</td>
<td>02AKT250 02ALA150</td>
<td>1×</td>
<td>28×</td>
<td>6.27×4.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2×</td>
<td>55×</td>
<td>3.13×2.35</td>
<td>40.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6×</td>
<td>165×</td>
<td>1.04×0.78</td>
<td>52.5</td>
</tr>
<tr>
<td>QV-HR2.5× QV-SL2.5×</td>
<td>02AKT300 02ALA170</td>
<td>1×</td>
<td>69×</td>
<td>2.5×1.88</td>
<td>40.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2×</td>
<td>138×</td>
<td>1.25×0.94</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6×</td>
<td>415×</td>
<td>0.41×0.31</td>
<td></td>
</tr>
<tr>
<td>QV-5×</td>
<td>02ALA420</td>
<td>2×</td>
<td>276×</td>
<td>0.62×0.47</td>
<td>33.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6×</td>
<td>829×</td>
<td>0.2×0.15</td>
<td></td>
</tr>
<tr>
<td>QV-HR10× QV-10×</td>
<td>02AKT550 02ALG010</td>
<td>1×</td>
<td>276×</td>
<td>0.62×0.47</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2×</td>
<td>533×</td>
<td>0.31×0.23</td>
<td>30.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6×</td>
<td>1672×</td>
<td>0.1×0.07</td>
<td></td>
</tr>
<tr>
<td>QV-25×</td>
<td>02ALG020</td>
<td>1×</td>
<td>961×</td>
<td>0.25×0.18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2×</td>
<td>1382×</td>
<td>0.12×0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6×</td>
<td>4167×</td>
<td>0.04×0.03</td>
<td></td>
</tr>
</tbody>
</table>

Monitor magnification shown here is that of Size 24 Liquid Crystal Display (resolution WUXGA).

*1 PRL lighting unit can be shorter than the operating distance due to the operating position of the Programmable Ring Light (PRL) depending on the location of PRL.

*2 Illumination can be insufficient in some cases depending on the workpiece.

*3 There is a limitation to the operating position of PRL.

WLI interference objective lens

<table>
<thead>
<tr>
<th>Objective Lens</th>
<th>Code No.</th>
<th>Interference Method</th>
<th>Monitor Magnification</th>
<th>Field of View (mm)</th>
<th>Operating Distance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QV WLI A-10×</td>
<td>02ALT630</td>
<td>Mirror</td>
<td>540×</td>
<td>0.32×0.24</td>
<td>12.6</td>
</tr>
<tr>
<td>QV WLI A-25×</td>
<td>02ALT670</td>
<td>Mirror</td>
<td>1350×</td>
<td>0.13×0.10</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Monitor magnification shown here is that of Size 24 Liquid Crystal Display (resolution WUXGA).

*1 Tube lens 2X is provided as a standard equipment. Also, the field of view may be smaller than those shown here due to pixel calibration.

Temperature compensation unit

Measurement result can always be outputted as values converted at standard temperature of 20°C, even if the ambient temperature is 23°C. The compensation calculation is based on the thermal expansion factor of the workpiece and temperature data provided by sensors placed at X, Y, and Z-axis scales and the workpiece.

- Temperature compensation of machine frame
- Temperature compensation of workpiece

Calibration

Tilt compensation jig for WLI optical head

Enables to compensate the mounting posture of WLI optical head. It helps to achieve measurement of the highest accuracy by compensating the tilting error of WLI optical head.

Interference fringe adjustment jig

Enables to adjust the focusing position of WLI interference objective lens with the position where interference fringes occur.

It is used in combination with the calibration chart.

Calibration chart

(for vision optical head & WLI optical head)

Used for pixel size compensation of CCDs and for compensating auto-focusing accuracy and optical axis offset at various magnifications of variable magnification PPT/zooming.

Note: There are some limitations to the function of each lens. Please contact one of our sales offices for details.

QV compensation chart (for vision optical head)

Glass chart designed for “in-screen compensation” to compensate for the distortion occurring in the screen caused by the optical system and for “auto-focusing compensation” to minimize auto-focusing fluctuations caused by the object’ pattern and texture.

Note: There are some limitations to the function of each lens. Please contact one of our sales offices for details.
Measurement Examples

**Semiconductor package substrate**
- Surface analysis
- Cross-sectional shape measurement

**Laser-machined hole**
- ID and depth measurements
- Cross-sectional shape measurement

**Pole**
- Cross-sectional shape measurement

**Microscopic precision machined part**
- Cross-sectional shape measurement

**Metal thin film**
- Surface analysis, and step measurement

**Light induction plate**
- Coordinate-position, OD, and height measurements

**Electronic part (polyimide)**
- Surface analysis, step, and cross sectional measurements
Specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>Hyper Quick Vision WLI 404</th>
<th>Hyper Quick Vision WLI 606</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>QVD1-H404P1L-C</td>
<td>QVD1-H404P1N-C</td>
</tr>
<tr>
<td>Code No.</td>
<td>363-701-1</td>
<td>363-702-1</td>
</tr>
</tbody>
</table>

WLI optical head unit

- **Measurement range**: 315×400×240 mm to 515×650×240 mm
- **Variable magnification device**: 2X
- **Imaging device**: B & W CCD camera
- **Illuminating device**: Vertical epo-illumination
- **Z-axis scanning range**: 170 µm
- **Repeatability accuracy**: 2σ ≤ 0.2 µm

Vision optical head unit

- **Measurement range**: 400×400×240 mm to 600×650×240 mm
- **Variable magnification device**: Programmable power turret PPT 1X-2X-6X
- **Imaging device**: B & W CCD camera
- **Illuminating device**: Vertical epi-illumination
- **Program control**: Color LED Halogen lamp

Vision measuring accuracy

- **L: Distance between arbitrarily selected two points [mm]**
  - E1x,y: 0.8±2L/1000 µm
  - E1z: 1.5±2L/1000 µm
  - E2xy: 1.4±3L/1000 µm

Main unit

- **Guide method**: Linear hard bearing
- **Minimum display unit/length measuring unit**: 0.01 µm/linear encoder
- **Size of loading glass**: 493×551 mm to 697×785 mm
- **Maximum mass of workpiece (excluding eccentric or concentrated load)**: 25 kg to 35 kg
- **Mass of main unit (excluding vibration isolator)**: 1160 kg to 2275 kg

Installation environment condition

- **Temperature condition**: 20±0.3°C
- **Fluctuation**: 0.5°C/1H
- **Slope**: 1° C/m (height/horizontal direction)
- **Vibration**: Max. amplitude ≤ 2 µm at frequency of 10 Hz or lower
- **Condition**: 70 dB or lower
- **Pneumatic pressure used**: 0.4 MPa
- **Power source voltage**: AC100~240V

*1 Movable range of WLI optical head. Three dimensional shape measurement using WLI is allowed within one field of vision.
*2 In case of standard mode. Applicable to max. 200 µm by modifying scan pitch.
*3 Accuracy when the proximity of the center of the video screen is measured at the middle of the measurement stroke within one plane using the objective lens 2.5X+PPT1X.

---

**External view dimension chart**

**Hyper Quick Vision WLI 404**

![External view dimension chart](image1)

**Hyper Quick Vision WLI 606**

![External view dimension chart](image2)
Note: All information regarding our products, and in particular the illustrations, drawings, dimensional and performance data contained in this pamphlet, as well as other technical data are to be regarded as approximate average values. We therefore reserve the right to make changes to the corresponding designs, dimensions and weights. The stated standards, similar technical regulations, descriptions and illustrations of the products were valid at the time of printing. Only quotations submitted by ourselves may be regarded as definitive.

Export permission by the Japanese government may be required for exporting our products according to the Foreign Exchange and Foreign Trade Law. Please consult our sales office near you before you export our products or you offer technical information to a nonresident.

Coordinate Measuring Machines
Vision Measuring Systems
Form Measurement
Optical Measuring
Sensor Systems
Test Equipment and Seismometers
Digital Scale and DRO Systems
Small Tool Instruments and Data Management

Mitutoyo Corporation
20-1, Sakado 1-Chome,
Takatsu-ku, Kawasaki-shi,
Kanagawa 213-8533, Japan
T +81 (0) 44 813-8230
F +81 (0) 44 813-8231
http://www.mitutoyo.co.jp